Use of speech presence uncertainty with MMSE spectral energy estimation for robust automatic speech recognition
نویسندگان
چکیده
In this paper, we investigate the use of the minimum mean square error (MMSE) spectral energy estimator for use in environmentrobust automatic speech recognition (ASR). In the past, it has been common to use the MMSE log-spectral amplitude estimator for this task. However, this estimator was originally derived under subjective human listening criteria. Therefore its complex suppression rule may not be optimal for use in ASR. On the other hand, it can be shown that the MMSE spectral energy estimator is closely related to the MMSE Mel-frequency cepstral coefficient (MFCC) estimator. Despite this, the spectral energy estimator has tended to suffer from the problem of excessive residual noise. We examine the cause of this residual noise and show that the introduction of a heuristic based speech presence uncertainty (SPU) can significantly improve its performance as a front-end ASR enhancement regime. The proposed spectral energy SPU estimator is evaluated on the Aurora2, RM and OLLO2 speech recognition tasks and can be shown to significantly improve additive noise robustness over the more common spectral amplitude and log-spectral amplitude estimators. 2010 Elsevier B.V. All rights reserved.
منابع مشابه
Improving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملSpeech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty
In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...
متن کاملMMSE estimation of log-filterbank energies for robust speech recognition
In this paper, we derive a minimum mean square error log-filterbank energy estimator for environment-robust automatic speech recognition. While several such estimators exist within the literature, most involve trade-offs between simplifications of the log-filterbank noise distortion model and analytical tractability. To avoid this limitation, we extend a well known spectral domain noise distort...
متن کاملMask estimation in non-stationary noise environments for missing feature based robust speech recognition
In missing feature based automatic speech recognition (ASR), the role of the spectro-temporal mask in providing an accurate description of the relationship between target speech and environmental noise is critical for minimizing the degradation in ASR word accuracy (WAC) as the signal-to-noise ratio (SNR) decreases. This paper demonstrates the importance of accurate characterization of instanta...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Speech Communication
دوره 53 شماره
صفحات -
تاریخ انتشار 2011